Tetrahedron Letters No. 19, pp 1621 - 1624, 1976. Pergamon Press. Printed in Great Britain.

INFLUENCE OF LONE-PAIR ELECTRONS ON THE SIGN OF *J(1*C-15N). SIGNS OF THE 1*C-15N COUPLING CONSTANTS IN 15N-PYRIDINE AND ITS DERIVATIVES

T. Bundgaard and H. J. Jakobsen

Department of Chemistry, University of Aarhus, 8000 Aarhus C, Denmark

(Received in UK 17 February 1976; accepted for publication 29 March 1976)

The importance of the effects of proximity and orientation of lone-pair electrons on the magnitudes and signs of 1H-15N, 1H-31P, 13C-15N, and 13C-31P nuclear spin-spin coupling constants has been well-documented in recent experimental and theoretical studies [1]. Special attention has been focused on the effect on two-bond couplings which appear to show the largest relative variations in such a geometrical dependence. The results for these couplings have demonstrated that lone-pair electron proximity makes a positive contribution to the reduced coupling constants ${}^{a}K_{ij} = 4\pi^{a}J_{ij}/h\gamma_{i}\gamma_{j}$. Reports on the magnitudes of two-bond ¹³C-¹⁵N couplings have shown a larger magnitude for ³J_{CN} when the carbon is cis to the nitrogen lone-pair electrons than when it is in the trans configuration [1h]. Although the absence of experimental sign determinations of long-range 13C-15N couplings prevented any detailed comparison with INDO-FPT calculated values [1h], it was pointed out that ${}^{2}J_{CN}$ in e.g. the <u>E</u>-acetaldoxime isomer (carbon cis to the nitrogen lone-pair) is probably negative. However, whether there is a reversal in sign for ${}^{2}J_{CN}$ from the <u>E</u>- to <u>Z</u>-isomer was not discussed although a lone-pair induced sign change has been observed for ${}^{2}J_{_{\mathrm{HN}}}$ in aldoximes [1a] and aldimines [1g] and for ${}^{2}J_{CP}$ in some aromatic phosphines [1d.]. We report here on the determination of signs for some one-, two-, and three-bond 13C-15N couplings, which indicates that a sign change is most likely to occur for ²J_{CN} in isomers of a geometrically rigid CCN fragment.

In connection with current studies on signs and magnitudes of ${}^{13}C_{-31}P$ couplings in phosphorins (phosphabenzenes) [2] we have determined experimentally [3] the signs of all ${}^{13}C_{-15}N$ coupling constants in ${}^{15}N_{-}$ pyridinium ion, 2, and pyridine- ${}^{15}N_{-}$ oxide, 3. The magnitudes and signs of the ${}^{13}C_{-15}N$ couplings (Table 1) were determined from ${}^{13}C_{-}\{{}^{1}H\}$ noise and off-resonance (selective) decoupled spectra, respectively, using 95% ${}^{15}N_{-}$ enriched samples. Excellent agreement is observed with the magnitudes of the ${}^{13}C_{-15}N$ couplings reported earlier for 1 and 2 [1c].

The signs of the ${}^{13}C-{}^{15}N$ couplings in <u>1</u>, <u>2</u>, and <u>3</u> were determined relative to those for the ${}^{1}H-{}^{15}N$ couplings using the earlier reported off-resonance or selective proton decoupling technique [4] which in general allowed

the sign of ${}^{n}J_{C-N} \times {}^{n+1}J_{H-N}$ to be obtained directly from the observed spectra. However, in order to interpret mainbignessly the off-resonance ${}^{13}C-\{1H\}$ spectra these experiments were simulated (e.g. for ${}^{15}N$ -pyridine, Figures 1-3) by means of the double resonance computer program HETDR [5]. The simulations, performed using the signs and magnitudes reported earlier [1c,6-9] or determined here for the ${}^{13}C-{}^{1}H$, ${}^{15}N-{}^{1}H$, and ${}^{1}H-{}^{1}H$ couplings, the spectrometer controlled parameters (i.e. decoupling frequencies and amplitudes), and correct signs for the ${}^{13}C-{}^{15}N$ couplings, show excellent agreements (Figures 1-3) with the experiments. However, rather large deviations were observed between some of the ${}^{1}H$ chemical shifts required to simulate the ${}^{13}C-{}^{1}H$ spectra and those estimated qualitatively from the apparent best decoupling frequencies (up to 6 Hz for C3 in 1; see Figure 2). Thus the ${}^{1}H$ NMR spectrum was reinvestigated for the present sample of 1 for (i) comparison with precise values for these shifts and (ii) for determination of the sign for ${}^{4}J_{H4-N}$.

The coupling constants obtained from analysis of the extremely well-resolved ¹H spectrum of <u>1</u> are within error limits with earlier reported values [1c, 6,7]. Furthermore, a positive sign could be determined for ⁴J_{H¹-N} (= +0.27 Hz) when a negative sign was used for both ²J_{H2-N} and ³J_{H3-N} [1c,8] in the analysis (LAOCN3, 106 assigned lines, rms error = 0.007 Hz). All other relative sign combinations for the ¹H-¹⁵N couplings gave slightly larger rms errors (0.011-0.013 Hz). Since this increase in rms errors reflects <u>large</u> deviations for only a <u>few</u> (4-6) lines, the sign determination is unambiguous. Finally, the negative sign suggested earlier [6] for ³J_{H2-H6} (= -0.11 Hz) is fully confirmed from the anal-

			Q 10 10 10 10 10 10 10 10 10 10 10 10 10
^{1 J} C2-N	+ 0.62 (- 1.54)	-11.85 (-27.5)	-15.23
^{°J} C3-N	+ 2.53 (+ 6.03)	+ 2.01 (+ 7.38)	+,1.43
³ J _C 4-N	- 3.85 (- 6.60)	- 5.30 (- 8.72)	- 5.17
² J _{H2-N}	-10.93 (-16.98)	- 3.01 (+ 0.47)	+ 0.47
⁹ J _{H3-N}	- 1.48 (- 0.59)	- 3.98 (- 7.51)	- 5.32
4 J _H 4-N	+ 0.27 (+ 0.54)	+ 0.69 (+ 1.73)	+ 1.11

<u>TABLE 1</u>. Comparison of Signs and Magnitudes of ¹³C-¹⁵N and ¹H-¹⁵N Coupling Constants in ¹⁵N-Pyridine Derivatives.^a

^aIn Hz with errors within \pm 0.03 Hz. INDO-FPT MO calculated values from refs. [1f] and [1h] are given in parentheses. Solutions are: <u>1</u>: 2.0 Molar in (CD_s)_gCO; <u>2</u>: 2.0 Molar in CD_sOH; <u>3</u>: 1.0 Molar in CDCl_s. ¹H-¹⁵N Coupling constants in <u>2</u> and <u>3</u> are taken from refs. [1c] and [9], respectively. <u>FIGURES 1, 2, and 3</u>. Experimental (upper parts) and simulated (lower parts) ¹³CX-{¹HX} double resonance spectra of the C2, C3, and C4 carbons in ¹⁵N-pyridine, <u>1</u>. The ¹H chemical shifts (relative to internal TMS at 100.1 MHz) and ¹H-¹H coupling constants used in the simulations and obtained from the ¹H NMR analysis are: $\nu_{H2} = 860.07$ Hz, $\nu_{H3} = 734.21$ Hz, $\nu_{H4} = 774.65$ Hz, $J_{23} = 4.90$ Hz, $J_{24} = 1.84$ Hz, $J_{25} = 1.01$ Hz, $J_{26} = -0.11$ Hz, $J_{34} = 7.68$ Hz, and $J_{35} = 1.37$ Hz. ¹³C-¹H coupling constants are from ref. [7]. Decoupling frequencies, ν_{2} (on the TMS-scale), and amplitudes $YH_{2}/2\pi$, are both in Hz.

10015

ysis. The proton chemical shifts are identical with those required for simulation of the ${}^{13}C-{}^{1H}$ spectra and thus differ from e.g. the H3 proton decoupling frequency giving the best multiplet collapse in the C3-{H3} spectra of Figure 2. This indicates that the ${}^{13}C-{}^{1H}$ methods for accurate determination of proton chemical shifts, as reported recently [10], may give erroneous results in certain strongly coupled systems without the use of ${}^{13}C-{}^{1H}$ double resonance simulations.

A positive sign has been proposed for ${}^{4}J_{H4-N}$ in <u>2</u> [1c,1f] although it was not verified experimentally. This suggestion is confirmed from the present results without reanalysis of its ¹H NMR spectrum. For both <u>2</u> and <u>3</u> the ¹SC-{¹H} double resonance experiments gave ${}^{3}J_{C4-N} \times {}^{4}J_{H4-N} < 0$. Analysis of the ¹H spectrum for the same sample of <u>3</u> showed that ${}^{4}J_{H4-N} > 0$ for this compound [9]. Thus ${}^{3}J_{C4-N}$ is negative for <u>3</u> and also for <u>2</u>, since a change in sign for this coupling is unlikely for the two compounds. It follows that ${}^{4}J_{H4-N}$ is positive in <u>2</u>. The positive sign and relative order determined experimentally for ${}^{4}J_{H4-N}$ in <u>1</u> and <u>2</u> agree with the results obtained from INDO-FPT calculations [1f]. Comparisons of the ¹³C-¹⁵N coupling constants (Table 1) for the ¹⁵N-pyridine derivatives show that the ²J_{C3-N}'s are all positive (²K_{C3-N} < 0) and decrease slightly with increasing electronegativity of the nitrogen substituent, i.e. within the series 1 > 2 > 3. The determination of ²J_{C3-N} > 0 for <u>1</u> demonstrates that nitrogen lone-pair electrons affect not only the relative magnitudes of two-bond ¹³C-¹⁵N couplings but may also induce a reversal in sign for ²J_{C-N} in certain CCN fragments of fixed geometry. Furthermore, this sign dependence observed for ²J_{C-N} is in accord with the signs predicted for ²J_{C3-N} (> 0), ²J_{C10-N} (> 0), and ²J_{C8-N} (< 0) in quinoline from INDO-FPT calculations [1h].

In general the INDO-FPT calculations for the ${}^{13}C-{}^{15}N$ couplings in <u>1</u> and <u>2</u> [1h] agree fairly well with the experimental results (Table 1) as far as the signs and general trends of the couplings are concerned. Only the sign for ${}^{1}J_{C2-N}$ in <u>1</u> has been wrongly predicted. Poorer agreement is observed for the magnitudes of the couplings. However, it is noteworthy that the determination of opposite signs for ${}^{1}J_{C-N}$ in <u>1</u> and <u>2</u> confirms the suggestion [1c] made on the basis of solvent effects.

Obviously, the determination of signs of two-bond ¹³C-¹⁵N couplings may provide a useful method for assigning stereochemistry in compounds possessing a nitrogen lone-pair of electrons, especially since the range of magnitudes for ²J_{C-N} is rather small (< 10 Hz).

REFERENCES

- (a) D.Crépaux and J.M.Lehn, <u>Mol.Phys.</u> 14, 547 (1968); (b) J.-P.Albrand, D. Gagnaire, M.Picard, and J.B.Robert, <u>Tetrahedron Letters</u> 4593 (1970); (c) R.L. Lichter and J.D.Roberts, <u>J.Amer.Chem.Soc</u>. 23, 5218 (1971); (d) S.Sørensen, R.S.Hansen, and H.J.Jakobsen, <u>ibid</u>. 24, 5900 (1972); (e) W.B.Jennings, D.R. Boyd, C.G.Watson, E.D.Becker, R.B.Bradley, and D.M.Jerina, <u>ibid</u>. 94, 8501 (1972); (f) R.Wasylishen and T.Schaefer, <u>Can.J.Chem</u>. 50, 2989 (1972); (g) H. C.Yeh, H.Ziffer, D.M.Jerina, and D.R.Boyd, <u>J.Amer.Chem.Soc</u>. 95, 2741 (1973); (h) R.L.Lichter, D.E.Dorman, and R.Wasylishen, <u>ibid</u>. 96, 930 (1974); and references cited in these papers.
- 2. T.Bundgaard, H.J.Jakobsen, K.Dimroth, and H.H.Pohl, <u>Tetrahedron Letters</u>, 3179 (1974).
- 3. ¹³C FT NMR spectra were obtained at 25.16 MHz on a Varian XL-100-15 spectrometer equipped with a S124-XL Fourier transform accessory, a Varian 620L 16K computer and using the system Gyrocode decoupler. Double resonance spectra were simulated on a CDC 6400 computer system using a Calcomp plotter at RECAU, University of Aarhus.
- 4. H.J.Jakobsen, R.S.Hansen, and T.Bundgaard, Mol.Phys. 23, 197 (1972).
- 5. T.Bundgaard, Thesis, University of Aarhus, 1973. O.Manscher, Thesis, University of Copenhagen, 1971.
- 6. S.Castellano, C.Sun, and R.Kostelnik, <u>J.Chem.Phys</u>. <u>46</u>, 327 (1967).
- 7. M.Hansen and H.J.Jakobsen, <u>J.Magn.Resonance</u> <u>10</u>, 74 (1973).
- 8. R.Price, Thesis, University of London, 1969.
- 9. T.Wamsler, J.T.Nielsen, E.J.Pedersen and K.Schaumburg, to be published.
- 10. Yu.N.Luzikov, N.M.Sergeyev, and Yu.A.Ustynyuk, <u>J.Magn.Resonance</u> <u>18</u>, 406 (1975)